Toktrapport 2018821

Fangstkontroll og fiskevelferd i ringnotfiske etter sild

 $M\!/\!S$ «Eros» 12-19.~juni~2018

Maria Tenningen¹, Michael Breen¹, Jostein Saltskår¹, Bjørn Totland¹, Jan Tore Øvredal¹, Joakim Haugen² og Per Gunnar Auran²

¹ Havforskningsinstituttet ² Sintef Ocean

Bakgrunn og toktmål

Hovedmålet med toktet var å:

- Utvikle og teste optiske og akustiske instrumenter og metoder for overvåking av fiskeatferd og fangstsammensetning under fiske med not.
- Studere hvordan fangsthåndtering påvirker fiskens velferd og derigjennom overlevelse etter slipping fra not og kvalitet.

Toktet støtter prosjektene Fangstkontroll i notfiske (15130) og CRISP (83851-04). Toktet gikk ut på at Eros fanget Nordsjøsild (kommersielle fangster) og vi samlet inn data om fangsten (atferd og vitalitet med sonar, kamera og fysisk prøvetaking på dekk), fiskeprosessen (inkl. logging av maskineri) og miljøforhold (strøm, vind, oksygen og temperatur i vannet) før fangst til fisken var i lastet ombord. Værforholdene var variable med noen dager med sterk kuling og noen dager med veldig fine forhold. Sildestimene var mange og små i stort sett nærme overflaten (0-70 m dyp). Stimstørrelsen skapte problemer for fiskerne som ønsket seg større fangster. Det ble mange kast med små fangster, < 10 - 40 tonn (Tabell 1). Veldig små stimer er også vanskeligere å skille fra bakgrunnsstøy med akustikk og gir ikke et helt realistisk bilde av fangstkvalitet og velferd ettersom fangstene vanligvis er betydelig større. Likevel er fisket slik noen ganger og da er det viktig å få data fra små fangster også. Resultatet ble 10 notkast i løpet av 2 dager (Tabell 1). Fangstene ble levert i Fosnavåg. Toktet ble startet og avsluttet i Bergen.

Tabell 1. Oversikt over fangstene

Date	Position		Fishing T	imes	Environm	ent				Catch	
Duit	TODITION		T Ioning T							Cuton	Ind.
					Wind	Wind	Current				Weight (kg)
				Pumping	strength	dir.	stregth	Current	Wave	Weight	
	Lat	Lon	Shoot	stop	(m/s)	(deg)	(30 m)	dir. (30 m)	height (m)	(t)	
											0.222
16.06.2018	61°02.08N	01°55.60E	06:30:35	08:01:55	5.5	168	0.2	356	1 - 2	20	
											NA
16.06.2018	61°00.31N	01°53.77E	10:18:44	NA	5	147	0.4	128	1 - 2	Bom	
											0.222
16.06.2018	61°02.02N	01°58.12E	12:53:28	14:03:00	5	152	0.3	171	1 - 2	13	
											0.229
16.06.2018	61°02.84N	02°05.06E	16:15:10	17:25:00	NA	NA	NA	NA	NA	25	
										-	0.227
16.06.2018			17:51:55	19:02:00	NA	NA	NA	NA	NA	36	
10.00.2010			11101100	1,102100						00	NA
16.06.2018	61°00 62N	02°03 35E	20.33.25	21.49.00	4 5	119	0.1	76	1 – 1 5	<10	1 11 1
10.00.2010	01 00.0211	02 03.33E	20.33.23	21.19.00	1.5	117	0.1	10	1 1.5	10	0.222
17.06.2018	61°06 00N	02°02 96E	07.44.20	00.08.00	3.2	14	0.4	5	0.5 1	13	0.222
17.00.2018	01 00.991	02 02.90E	07.44.20	09.08.00	5.2	44	0.4	5	0.3 - 1	15	0.224
17.06.2019	61012 02N	01054 665	10.26.50	11.40.00	2.1	75	0.4	70	0.5	10	0.224
17.00.2018	01 12.92N	01 34.00E	10:20:30	11:49:00	2.1	15	0.4	78	0.5	10	0.226
17.06.2010	C1011 1CN	01050 015	10.44.50	12.50.00	2.0	105	0.2	120	0.5	26	0.230
17.06.2018	01°11.16N	01°50.91E	12:44:56	13:58:00	2.8	125	0.3	138	0.5	36	N T 4
			1			100	0.7	4 - 0	c -		NA
17.06.2018			15:00:50	NA	6.2	109	0.3	169	0.5	Bom	

Aktiviteter

- 1. Ekkoloddmålinger av sild med flyvende drone
- 2. Maskineri og miljødata logging og integrering
- 3. Stimovervåking før og tidlig kast med Simrad SN90 sonar
- 4. Utskytbar instrumentsonde fiskeatferd, størrelse og art
- 5. Catch and handling stress effects on vitality
- 6. Fotografering av sild for analyse av skjelltap og hudskader

1. Ekkoloddmålinger av sild med flyvende drone

Birdview AS, Simrad og Havforskningsinstituttet har utviklet et system der fiskestimer blir målt med vitenskapelig ekkolodd (Simrad ES200 – 7CDK transducer med Simrad WBT mini transceiver) festet under flyvende drone. Målet i dette prosjektet er å bruke drone til å observere fisketetthet og vertikalfordeling før og under fangst med not og sammenligne dataene med flerstråle sonarobservasjoner. Måling av fiskestimer med drone kan også være interessant for fiskerinæringen og bestandsestimering i fremtiden, spesielt om man i tillegg kan identifisere art og størrelse i sanntid.

Transceiver var montert i en Peli-case box sammen med batteri og omformer og festet til dronen (Figur 1.1 og 1.2a). Transducer hang i en 9m lang kabel og ble senket i vannet ved hjelp av den flyvende dronen og kunne da måle fiskestimer. WBT mini ble operert fra en PC på båten via et radiomodem (Figur 1.2b). Det var da mulig å starte/stoppe pinging og sende komprimerte VBS (volum backscattering) data til båten under operasjonen (Figur 1.2c). I tillegg lagres rådata i minnebrikke festet til transceiver for etter-prosessering (Figur 1.2d). Det var en del problemer med styringen av dronen på grunn av forstyrrelser i magnetfeltet som igjen påvirket kompasset. Dronepilotene gikk over på delvis manuell styring og da gikk styring av drone relativt bra. Flytiden var kun på ca. 15 minutter og dronen er følsom for vind og regn. I fremtiden vil det være behov for å utvikle / bruke en annen type drone. Sildestimene var små og vanskelige å treffe med dronen, men vi fikk en del målinger av fisk som ble visualisert i sanntid og lagret (Figur 1.2c og d). Sonar på egen og andres båter ga imidlertid en del støy på ekkoloddet på dronen.

Toktrapport/Havforskningsinstituttet/ISSN 15036294/Nr. 8-2019

Figur 1.1. System diagram

Figur 1.2. Birdview AS opererer flyvende drone med ekkolodd (Simrad ES200 – 7CDK transducer og WBT mini transceiver) (a). Data blir overført fra drone til pc gjennom radiolink (b). Dataene blir visualisert med et program skrevet av Gavin Macaulay, HI (c). Rådata lagret i instrumentboksen under dronen etterprosesseres i lsss (d).

2. Maskineri og miljødata logging og integrering

Innsamling og sammenstilling av signaler fra fartøyet er nyttig blant annet for fiskeadferd og utvikling av nye beslutningsverktøy. M/S «Eros» har tidligere blitt utstyrt med loggeutstyr – Ratatosk – fra SINTEF som sammenstiller og logger en rekke ulike signalkilder fra utstyr om bord. Det har blitt utviklet et program som deler informasjonen fra loggeutstyr til en tredjeparts programvare – Noldus Observer XT – i sanntid. En aktivitet under toktet var dermed å sammenkoble disse programmene og sørge for at signalene fant veien fra Ratatosk til Observer XT. I forkant av toktet ble det forespurt en rekke signaler som det er ønskelig å logge i forbindelse med adferdsanalyser. Ettersom ikke alle disse signalene var tilgjengelig i Ratatosk fra tidligere installasjoner, var en annen aktivitet å utforske nye instrumenteringsmetoder som enkelt kan tilgjengeliggjøre informasjon om dekksmaskineri. Tabell 2.1 gir en oversikt over signaler som ble (forsøkt) gjort tilgjengelig i løpet av toktet.

Snurpevinsjene befinner seg under dekk og det er ikke lett tilgjengelig signalvei for kablede signalkilder til brua hvor loggeutstyret er montert. Det ble forsøkt montert små blåtannenheter på vinsjtromlene som måler orientering. Hensikten var å kunne måle omdreininger av tromlene og dermed kunne gi et estimat på vinsjet vaierlengde og hastighet. Det var mulig å få signaler opp til brua ved trådløs blåtannkommunikasjon, men ikke tilstrekkelig pålitelig for god måling av vinsjene i sanntid. Utplassering av loggeutstyr i nærheten blåtannenheter ga mer pålitelige målinger, men ikke tilgjengeliggjøring av signaler i sanntid.

I tillegg til maskineri, navigasjon og miljødata logget med Ratatosk, blir mange andre data kilder kompilert og lagret I NOLDUS Observer XT software, bland annet sanntidsvideo av fiskeprosessen, og atferds- og miljødata fra fangstovervåkingsprobe. Kompilerte og tidssynkroniserte data kan så brukes til integrerte analyser om fiskeatferd under fangst (Figur 2.1).

Signal	Signalnavn	Enhet
Fartøy kurs over grunnen	Vessel.cog	rad
Fartøy GPS posisjon, WGS 84	Vessel.lat, Vessel.lon	deg
Fartøy fart over grunn	Vessel.sog	m/s
Fartøy hastighet gjennom vannet	Log.speed	m/s
Akselerasjon 3 akser	Acceleration	m/s^2
Hastighetsendringer, 3 akser	DeltaVelocity	m/s
Fartøyets kurs	Gyro.hdt	rad
Rate of turn	Gyro.rot	rad/s
Rullvinkel	Roll_degree	deg
Orientering 3 akser	EulerAngles	rad
Orienteringsendring, 3 akser	OrientationRate	rad/s
Dybde	Depth.depth	m
Dybde under transducer	Depth.depthBelowTransducer	m
Dypgang baug	DepthBow	m
Dypgang hekk	DepthStern	m
Maskineri		
	<u>Hjelpemotorer (AE1, AE2)</u>	
Oljeforbruk hjelpemotorer	Machinery.AE{1,2}.cons	kg/h
Effekt hjelpemotorer	Machinery.AE{1,2}.power	kW
Propellturtall	Machinery.propeller.RPM	Hz/60
Propellstigning	Machinery.propeller.pitch.percent	%
Propellturtall	Propeller.RPM	Hz/60
Akselgenerator effekt	Machinery.ShaftGenerator.power	kW
Effekt thruster baug	Machinery.Thruster.bow	kW
Samlet effekt thrustere hekk	Machinery.Thruster.stern	kW
Hjelpemotorer oljeforbruk	Vessel.machinery.auxCons	kg/h
Hjelpemotorer elektrisitetsproduksjon	Vessel.machinery.auxElProd	kW
Hjelpemotorer last	Vessel.machinery.auxLoad_kW	kW
Hovedmotor oljeforbruk	Vessel.machinery.meCons	kg/h
Hovedmotor last	Vessel.machinery.meLoad_kW	kW
Hovedmotor turtall	Vessel.machinery.meRpm	Hz/60
Power take in, power	Vessel.machinery.ptiPower	kW
Power take off, power	Vessel.machinery.ptoPower	kW
Totalt oljeforbruk delt på total effekt	Vessel.machinery.sfc	kg/kWh
Totalt oljeforbruk	Vessel.machinery.sumCons	kg/h
Total elektrisitetsproduksjon	Vessel.machinery.sumElProd	kW
Total last	Vessel.machinery.sumLoad_kW	kW
Normalisert oljeforbruk	Vessel.nfc	-
Fremdrift virkningsgrad	Vessel.propulsion.efficiency	%
Fremdrift pitch	Vessel.propulsion.pitchPd	-
Fremdrift pitch prosent	Vessel.propulsion.pitchPercent	%
Fremdrift effekt	Vessel.propulsion.power	kW

Tabell 2.1. Signalliste M/S «Eros»

Toktrapport/Havforskningsinstituttet/ISSN 15036294/Nr. 8-2019

Fremdrift effekt til jet propeller	Vessel.propulsion.powerToPropellerJet	kW
Propellturtall	Vessel.propulsion.rpm	Hz/60
Hastighet gjennom vannet	Vessel.propulsion.speed	m/s
Propell skyvkraft	Vessel.propulsion.thrust	kN
Propell dreiemoment	Vessel.propulsion.torque	kNm
Manglende data / under arbeid		
Snurpevinsjer	PurseWinch.aft, PurseWinch.forward	Hz/60
Vindfart, absolutt	Wind.trueSpeed	m/s
Vindretning, absolutt	Wind.trueDir	rad
Vindfart, relativ	Wind.relSpeed	m/s
Vindretning, relativ	Wind.relDir	rad
	<u>Strømprofil</u>	
Strømlag x dybde	Current.x.depth	m
Strømlag retning, absolutt	Current.x.direction	rad
Strømlag fart, absolutt	Current.x.speed	m/s
Redskap dybde	Scanmar.depth	m

Figure 2.1. An overview of the compilation and integration of data (behavioural, engineering, environmental, and navigational) from several sources (vessel, live video, remote logging devices, catch monitoring devices and user defined inputs) via the Ratatosk, N-Linx, Media Recorder and Observer XT systems.

3. Stimovervåking før og under fangst – SN90

Stimenes atferd og reaksjon til fangst ble overvåket med Simrad SN90 sonar før og under fangst (Figur 3.1.). Før fangst og under utsetting av not var dataene bra. Under snurping mistet vi i stort sett signalet fra stimen, foruten i de største fangstene der vi til tider hadde gode data også under snurping. Under innhaling av not varierte kvaliteten på dataene. Stimene gikk ofte inn i notveggen lengst unna båten og da var det ikke mulig å skille stimen fra nota. Notveggen var i stort sett godt synlige på skjermen, mens de små stimene var vanskelige å skille fra andre ekkoer inne i noten. Det var mye støy i sonarsignalene, fra ekkoloddene og de andre sonarene (SU90 ca. 27 kHz, SC90 85 kHz. Dataene ble bedre da 38 kHz ekkolodd ble slått av. Til tross for at Eros har montert SN90 sonaren i senkekjølen, ca. 8 m under overflaten, ble de akustiske signalene blokkert av luftboblestøy fra side-trustere.

Figur 3.1. Skjermdump fra SN90 sonaren. Et snitt gjennom stimen kan ses vertikalt og horisontalt. I tillegg vises data fra en enkel stråle gjennom stimen som et ekkogram. Stim xx under utsetting (a) og innhaling av not (b).

Figur 3.2. Prosesserte data fra lsss (program for etterprosessering av akustiske data). Figuren til høyre viser båtens (lilla) og stimens (røde) posisjoner. Stimen svømte i sør-vestlig retning med en fart på omtrent 0.5 knop og båten sirklet to ganger rundt stimen, første runde er for å overvåke stimens størrelse og atferd svømmehastighet og retning for å vite hvordan best å sett ut nota og størrelse på stimen. Den andre sirkelen er når noten blir satt ut rundt stimen. Til venstre ser man hvordan ekkostyrken fra stimen varierer avhengig av den relative vinkelen mellom stimens svømmeretning og den akustiske strålen. Rotation angle er vinkelen de akustiske strålene treffer stimen relativt til svømmeretning.

4. Utskytbar instrumentsonde - fiskeatferd, størrelse og art

To monitor and characterise the catch (with respect to species composition, individual size distribution and behaviour), as well as describe environmental conditions in the net (i.e. temperature and dissolved oxygen concentrations), IMR/HI is developing the Catch Monitoring Probe (CMP). This system comprises several different instruments, including: a pneumatic canon (for deploying the probe into the catch); a shock proof housing (to protect, support and stabilise the instruments during deployment and operation); a Sony 360 Camera (for complete contextual views around the probe); a Weeview SID stereo camera (for making 3D measurements inside the catch, including fish size); RINKO ID oxygen, temperature & depth logger; and compass and tilt sensors (for logging the orientation of the probe during operations). In addition to the CMP, a simpler version of the monitoring probe (containing; a RINKO ID oxygen, temperature & depth logger; and GoPro 5 camera) was attached to the vessel's catch pump, to monitor the catch during pumping; where it would be too hazardous to deploy the CMP (figure 4.1).

Toktrapport/Havforskningsinstituttet/ISSN 15036294/Nr. 8-2019

Preliminary analysis of the data has revealed that during most of the capture process, the small fish schools (max: 36 tonnes) remained relatively uncrowded and free-swimming, with no evidence of any significant hypoxia (figure 4.2). However, during pumping the catch became very crowded and oxygen concentrations as low as 36.6 % saturation (3.67mg/l) (cast 05) were observed.

Figure 4.1. The Catch Monitoring Probe fitted to the catch pump.

Figure 4.2. Examples of oxygen and depth profiles from the catch monitoring probe (CMP); top cast 01 and bottom cast 09.

Cast	Catch Monit	oring Probe (N	Pump Monitoring Probe				
	Canon	360 Camera	Stereo	Oxygen &	Compass &	Go Pro	Oxygen &
	deployment		Camera	Temperature	Tilt Sensor	Camera	Temperature
				Logger			Logger
1	Ok	Ok	Sid#1 - Ok	Ok	Switched off during depolyment	Ok	Ok
2	NA	NA	NA	NA	NA	NA	NA
3	Ok	Switched off during depolyment	Sid#2 - Ok	Protective cap left on - blown off	Switched off during depolyment	Photo only	Protective cap left on
4	Ok	Ok	Sid#1 - Ok	Ok	Ok	Ok	Ok
5	Ok	Ok	Sid#2 - Ok	Ok	Flooded	Ok	Ok
6	Ok	Ok	Sid#1 - Ok	Ok	NA	Ok	Ok
7	Ok	Ok	Sid#2 - Ok	Ok	NA	Ok	Ok
8	Ok	Ok	Sid#1 - Ok	Ok	NA	Ok	Ok
9	Ok	Ok	Sid#2 - Ok	Ok	NA	Ok	Ok
10	Ok	Ok	Sid#1 Switched off before depolyment	Ok	NA	NA	NA

Table 4.1. Performance of individual instruments in the Catch and Pump Monitoring Probes.

In general, both probes functioned well. Although, inevitably, with such a complex assembly of instruments, individual instrument failures did occur that prevented complete data collection from some casts (table 4.1). Some instruments switched off before or during deployment:

- Stereo camera (SID#1) in cast 10, this camera switched itself off before deployment. This was not noticed until the film was reviewed after the cast, and the cause remains unknown.
- 360 Camera in cast 3, the camera switch off during deployment, due to a misalignment of the camera in its waterproof housing.
- Compass and tilt sensor in casts 01 and 03, the instrument shut down unexpectedly while being shot from the canon. It was suspected that some electronic components may be loose, so the electronics were repacked, with additional shock absorbing foam, which appeared to solve the problem in cast 04. Unfortunately, the waterproof housing for this instrument flooded in cast 05. A new water-proof housing, containing additional O-rings, will be constructed for the next tokt.

Due to the rapid repetition of casts (up to 7 in one day), and the complexity of probe deployment and downloading operations, some operational errors occurred resulting in lost data (e.g. cast 03). To address this, a system of checks and safeguards were introduced, which significantly improve data recovery rates; e.g. using warning tags to ensure safety caps are removed before probe deployments.

The new probe housing functioned well, with regards to protecting and stabilising the instruments. However, several issues were identified during the trials that will require further work before the next tokt. Firstly, it was noticed that air was unintentionally being trapped inside the body of the housing, making the submerged half of the probe more buoyant than designed (and therefore unstable). Holes were drilled in the outer casing of the housing, to ensure that the wet sections flooded more quickly. However, preliminary analysis of the oxygen/depth data and video footage has revealed that there is still some air retention for at least the first 5 minutes of the deployment. More importantly, as the air is slowly bubbling out of the housing, it appears to be increasing the localised dissolved oxygen concentration – thus affecting the reliability of the probe oxygen measurements (figure 4.2).

Secondly, the probe housing is now heavier than initially planned, which limits how far it can be shot into the net (approximately 20 m). Short range deployments can be extended to the outer part of the net (i.e. away from the vessel), by allowing it to drift out from the initial point of deployment. However, options for reducing the weight of the CMP were discussed, including reducing the number of instruments. This may have some advantages for the stereo-camera, which ideally should be deployed as soon as possible in the capture process – to ensure an early characterisation of the catch (species composition and individual size distribution), particularly once the real-time link to the system has been developed.

Figure 4.3. Paired stereoscopic images from different stages of the capture process.

With regards to the stereo-camera, further analysis is required to determine whether the Weeview SID camera is suitable for catch characterisation. During calibration of the system, it was noticed that distance measurements are inaccurate in the z-dimension (i.e. into the image) due to poor depth of field resolution because of the small distance (5cm) between to two camera lenses. Images from this tokt will be used to determine whether measuring fish that are swimming approximately perpendicular to the camera (i.e. with minimal reference to the z-dimension) can be used for accurate mean length/weight characterisation compared to measured catch sub-samples (Figure 4.3). This would be advantageous, because the SID camera has several useful features, including: it is a commercially available product; is lightweight; and outputs a single synchronised video stream of paired images (thus avoiding image synchronisation issues, particularly during live feed transmissions). If not, it will be necessary to develop a new camera system, which has lens separation distances optimised for catch characterisation.

5. Catch and handling stress effects on vitality

A key objective of WP5 is to be able to determine the stress- (or welfare-) status of the catch at different stages of the capture process, which will also be linked with catch quality. In addition to monitoring the behaviour of fish in the catch (see above), on this tokt we also used a suite of behaviours/reflexes to monitor the "vitality" of individual fish sampled from the catch after pumping from the net. "Vitality" is an objective measure of how alive an animal is, or conversely how close to death it is. Its objective measurement relies on using a selection of behavioural metrics, or reflexes, that can reliably indicate their ability to respond to a range of different stimuli, both contextual and physical. In this assessment, nine different metrics were used; 5 free swimming observations (in an observation tank) and 4 observations while handling (see table 5.1).

Figure 5.1. Left: fish are sub-sampled from the pumped catch for a vitality assessment; and right: a herring is examined for vitality.

Sub-samples from the pumped catch from four casts were assessed for vitality (casts 1, 3 4 and 7). Of these, three (cast 1, 4 and 7) were further assessed with sub-samples taken from the refrigerated seawater tanks (RSW) (Table 5.2). Sampling from the RSW tanks continued, at approximately hourly intervals, until a fresh catch was added to the tank; after which there would be no way of determining the origins of the sample from the tank. Each tank was also monitored using a SAIV CTD/O logger (for temperature, depth, conductivity and dissolved oxygen). However, the CTD/O failed at approx. 19:27 on 16/6/18 (cause unknown – possibly low operating temperatures), after which no further data could be collected.

Mean RSW tank temperatures were consistently less than -1 °C. Although, small peaks in temperature were observed when the catches were added to the tanks, due to the higher

ambient temperature of the seawater in which the fish were taken from (~11 °C). Dissolved oxygen decreased in each tank over time: rapidly, following the addition of the catch; but then the depletion rate gradually slowed (figure 5.2).

Cast	catch	Tank	Tank size	Density (tonnes/m ³)		CTD/O
	(tonnes)		(m ³)	per catch cumulative		Record
Cast 1	20	Stbd #2	187	0.107	0.107	у
Cast 3	5	Stbd #2	187	0.027	0.134	у
Cast 4	25	Port #2	187	0.134	0.134	у
Cast 5	36	Port #2	187	0.193	0.326	у
Cast 6	6	Port #2	187	0.032	0.358	У
Cast 7	13	Port #3	210	0.062	0.062	n

Table 5.1. Record of catches and the refrigerated seawater (RSW) tanks they were stored in. Cast monitored for vitality are highlighted in green.

Figure 5.2. Temperature (°C) and oxygen concentration (% saturation) in a re-frigerated seawater tank (RSW PORT #2) during and after the additional of catch of cast 4 (and including the addition of catch from cast 5). Periods when samples from the catch of cast 04 are monitored for vitality are shown as blue shaded areas.

Mean vitality scores generally decreased over time, but some fish remained alive in the RSW tanks for several hours after capture and pumping (figure 5.3). Moreover, preliminary results

suggest that rate of decrease in vitality may be related to the relative sizes of the catches transferred into the RSW tanks, with larger catches associated with more rapid reduction in vitality. It is suspected that this may be linked to the hypoxic conditions developing in the RSW tanks, but there is currently insufficient data to test this. Work will continue to collect vitality related data on subsequent cruises, with the aim of determining the cause of death of the fish after capture and its likely effects on quality.

Figure 5.3. Vitality scores from sub-samples of herring taken during pumping, and subsequently from the RSW tanks. The rate of decline of the vitality scores appears to be related to the size of the respective catch.

	Test	Positive Response	Negative implications (i.e. response absent or weak)
Free Swimming Observation	s	1	,
Evasion	Fish transfered from net into observation tank	A "startle" response, or swims around tank seeking "escape".	Fish lacks awareness of substantial change in environment. Or is unable to respond due to exhaustion, or physical injury.
Orientation / Self-righting	Fish transfered from net into observation tank	Can self-orientate dorsal side up within 5 seconds of transfer.	Fish has lost a basic reflex - balance. Therefore, swimming and avoidance of potential threats will be severely compromised.
Head Complex	Fish transfered from net into observation tank	A coordinated and regular use of mouth and operaculae - indicative of normal respiration (> 1 per 10 sec).	Absence - respiratory failure, fish is dead or close to death. Very strong - fish may be hypoxic or fatigued.
Startle Reaction	Observer strikes side of observation tank with hand.	Fish should respond immediately (< 1 sec) with a "startle" response.	Fish lacks awareness of potential threat. Or is unable to respond due to exhaustion, or physical injury.
Caudal Reflex	Observer touches, or attempts to hold, caudal fin.	Fish immediately (<1 sec) attempts to swim away from physicalm contact.	Fish lacks awareness of potential physical threat. Or is unable to respond due to exhaustion, or physical injury.
Observations While Handlin	g		
Body Flex 1 - Restrained	Observer hold fish firmly in clenched hand, with thumb and fore-finger just posterior of operculae.	Fish should flex its tail musculatur in an attempt to escape (< 3 sec). [NB - test starts in water, as observer attempts to remove fish from tank].	Fish lacks awareness of strong physical threat (i.e. restraining). Or is unable to respond due to exhaustion, or physical injury.
Vestibulo-ocular response	Observer - while holding fish as above - rotates fish on the longitudinal axis.	Fish should attempt to hold eye steady, with respect to horizonal. That is, looking from the posterior, the eye should appear to look down, as the head is rotated clockwise; and vice versa.	Fish has lost a basic reflex - balance. May indicate loss of functionality in brain stem.
Mouth Closure	Observer - while holding fish as above - uses finger to open open fish's mouth.	Fish should attempt to resist opening action. May also respond with a "head-complex motion" and/or "body flex" (< 3 sec).	Fish lacks awareness of an intrusive physical threat. Or is unable to respond due to exhaustion, or physical injury.
Body Flex 2 - Flat surface	Fish is laid, unrestrained, on a flat surface.	Fish should flex its tail musculatur (< 3 sec).	Fish lacks awareness of substantial change in physical status - i.e. released but emersed. Or is unable to respond due to exhaustion, or physical injury.

Table 5.2. Summary of vitality metrics used for herring sub-sampled from the pump and RSW tanks.

6. Fotografering av sild for analyse av skjelltap og hudskader

Det er fortsatt usikkert hva som er årsaken til at sild som blir fanget og trengt i not dør. Det kan være hudskader og infeksjoner, mangel på oksygen eller en kombinasjon av flere faktorer. Under toktet ble mellom fem og ni sild fra fire kast fotografert i en spesialbygd fotoboks (Figur 6.1). Bildene skal brukes til å måle skjelltap og registrere ytre skader på fisken. Hver fisk er merket og kan kobles til resultat fra vitalitets test (del 5) og lengde og vektmålt.

Figur 6.1. Silden ble fotografert på begge sider i en fotoboks. Hver fisk var merket og bildene kan kobles mot vitalitets resultat og lengde vekt data.